ศิลป์และศาสตร์แห่งการเดินเรือ – จากที่เรือรายงานสู่ที่เรือดาวเทียม (ตอนที่ ๒)

การเดินเรือดาราศาสตร์สมัยใหม่

ในช่วงศตวรรษที่ ๑๗ – ๑๘ การเดินเรือดาราศาสตร์ได้พัฒนาทั้งด้านเครื่องมือวัดและด้านวิธีการคำนวณจนนักเดินเรือสามารถหาที่เรือได้แม่นยำภายในระยะไม่กี่ไมล์ และได้กลายเป็นวิธีหลักสำหรับการเดินเรือในมหาสมุทรหรือทะเลเปิดไกลฝั่งในยุคนั้น แต่หลักการของการเดินเรือ ดาราศาสตร์ในศตวรรษที่ ๑๘ นั้น ไม่เหมือนกับการเดินเรือดาราศาสตร์ในปัจจุบันเสียทีเดียว กล่าวคือที่เรือในสมัยนั้นได้มาจากการหาละติจูดและลองจิจูดจากการวัดวัตถุท้องฟ้าโดยตรง โดยค่าละติจูดหาได้จากการวัดดาวเหนือ (ในซีกโลกเหนือ) หรือการวัดดวงอาทิตย์ขณะผ่านเมอริเดียน ส่วนค่าลองจิจูดหาได้จากวิธี LUNAR DISTANCE หรือการวัดดวงอาทิตย์เพื่อหาเวลาท้องถิ่น (LOCAL APPARENT TIME) แล้วคำนวณหาค่าลองจิจูดโดยใช้เวลามาตรฐานประกอบกับค่าละติจูดที่หาได้ก่อนหน้า

หลักการของเส้นตำบลที่ท้องฟ้า (CELESTIAL LINE OF POSITION) และวิธี ALTITUDE INTERCEPT ที่นักเดินเรือในปัจจุบันคุ้นเคย ยังไม่ได้ถูกคิดค้นในศตวรรษที่ ๑๘ ทั้งที่นักเดินเรือในสมัยนั้นใช้วิธีเดินเรือดาราศาสตร์เป็นวิธีหลักในการเดินเรือในทะเลห่างฝั่งมานับร้อยปี จนกระทั่งในปี ค.ศ.๑๘๓๗ (พ.ศ.๒๓๘๐ – ตรงกับสมัยพระบาทสมเด็จพระนั่งเกล้าเจ้าอยู่หัว ในช่วง รัตนโกสินทร์ตอนต้น) ธอมัส ซัมเนอร์ (THOMAS SUMNER) ชาวอังกฤษ ได้ค้นพบหลักการ เส้นตำบลที่ท้องฟ้าโดยบังเอิญขณะนำเรือเข้าช่องแคบ ST. GEORGE ระหว่างไอร์แลนด์กับเวลส์ อย่างไรก็ดี การค้นพบของซัมเนอร์ไม่ได้อาศัยเพียงโชคและจังหวะความบังเอิญเพียงอย่างเดียว แต่ต้องอาศัยความช่างสังเกตและความเป็นชาวเรือของซัมเนอร์เองด้วย ซึ่งการค้นพบของซัมเนอร์จัดได้ว่าเป็นพื้นฐานสำคัญของการเดินเรือดาราศาสตร์สมัยใหม่ในปัจจุบัน

ซัมเนอร์ออกเดินทางจากชาร์ลสตัน (CHARLSTON, SOUTH CAROLINA) ในปลายเดือนพฤศจิกายน ค.ศ.๑๘๓๗ เพื่อเดินทางไปยังกรีนอค (GREENOCK, SCOTLAND) บนฝั่งตะวันตกของเกาะอังกฤษ เรือของซัมเนอร์ใช้เวลา ๒๒ วัน เดินทางมาถึงหน้าช่องแคบ ST. GEORGE ในกลางเดือนธันวาคม แต่สภาพอากาศปิดทำให้ซัมเนอร์ไม่สามารถหาที่เรือดาราศาสตร์ได้ ต้องอาศัยเพียงที่เรือรายงานมาหลายวัน ซัมเนอร์จึงรอให้สว่างก่อนจึงเริ่มเปลี่ยนเข็มไปทางตะวันออก เฉียงเหนือเพื่อเข้าช่องแคบ ซึ่งมีความกว้างประมาณ ๔๐ ไมล์

ในตอนเช้าของวันรุ่งขึ้นท้องฟ้าเริ่มเปิดพอให้ซัมเนอร์วัดดวงอาทิตย์เพื่อหาค่าลองจิจูดได้ แต่เขายังไม่มีค่าละติจูดสำหรับใช้ในการคำนวณหาเวลาท้องถิ่น ซัมเนอร์จึงประมาณค่าละติจูดจากที่เรือรายงาน โดยเขาทำการคำนวณ ๓ – ๔ ครั้งด้วยค่าละติจูดที่ต่างกันเพื่อหาค่าเฉลี่ย แต่ผลที่ได้ทำให้ซัมเนอร์ประหลาดใจเมื่อตำบลที่ที่ได้จากการคำนวณทั้งหมดเรียงกันเป็นเส้นตรงพอดี นอกจากนี้ซัมเนอร์ยังโชคดีที่เส้นตรงดังกล่าวลากเกือบผ่านกระโจมไฟ SMALL’S LIGHT ซึ่งอยู่ห่างออกไปทางตะวันออกเฉียงเหนือประมาณ ๒๐ – ๓๐ ไมล์ ซึ่ง ณ เวลานั้นซัมเนอร์เข้าใจสิ่งที่เขาได้ค้นพบนั้นเป็นเพียงความบังเอิญ แต่ด้วยความช่างสังเกตและไหวพริบทำให้ซัมเนอร์พบว่าเขาสามารถใช้เส้นนี้แทนเส้นตำบลที่ได้ ซึ่งที่เรือจะต้องอยู่ที่ใดที่หนึ่งบนเส้นนี้ และหากเขานำเรือไปทางตะวันออกเฉียงเหนือตามเส้นนี้ไปเรื่อยๆ ก็จะเห็นกระโจมไฟ SMALL’S LIGHT ในที่สุด และสมมุติฐานของซัมเนอร์ก็ได้รับการยืนยันเมื่อเรือของเขาผ่านกระโจมไฟ SMALL’S LIGHT จริง ซึ่งหากซัมเนอร์ไม่ทันฉุกคิดเรื่องเส้นตำบลที่ หรือเกิดซุ่มซ่ามนำเรือไปเกยหินเสียก่อน การพัฒนาการเดินเรือดาราศาสตร์ก็อาจต้องใช้เวลานานกว่านี้

ต่อมาซัมเนอร์ได้ศึกษาเหตุการณ์ที่ช่องแคบ ST.GEORGE เพิ่มเติม และพบว่าเส้นตำบลที่ ที่ได้นั้นไม่ใช่ความบังเอิญ นอกจากนั้นเส้นตำบลที่ดังกล่าวยังทำมุมตั้งฉากกับมุม AZIMUTH ของดวงอาทิตย์ และในปี ค.ศ.๑๘๔๓ ซัมเนอร์ได้ตีพิมพ์หนังสืออธิบายวิธีหาที่เรือด้วยการตัดกันของเส้นตำบลที่ดาราศาสตร์สองเส้นโดยเส้นตำบลที่เส้นแรกได้มาจากการวัดดาว ๑ ดวง แล้วคำนวณหาลองจิจูดจากค่าละติจูดที่ได้จากที่เรือรายงาน ๒ ครั้ง (เช่นเดียวกับที่ซัมเนอร์ทำที่ช่องแคบ ST.GEORGE) ส่วนเส้นตำบลที่ดาราศาสตร์อีกเส้นอาจได้มาจากการวัดดาวอีก ๑ ดวง หรือการวัดดาวดวงเดิมในเวลาต่อมา

อันที่จริงแล้ว เส้นตำบลที่ที่ซัมเนอร์ค้นพบไม่ได้เป็นเส้นตรง แต่เป็นส่วนโค้งของวงกลมที่มีรัศมีกว้างมาก เมื่อนำแค่ส่วนเล็กของส่วนโค้งดังกล่าวมาพล๊อตบนแผนที่จึงออกมาเกือบเป็นเส้นตรง ซึ่งไม่ว่าตำบลที่ใดบนเส้นนี้จะวัดมุมสูงของวัตถุท้องฟ้าได้เท่ากัน จึงเรียกวงกลมนี้ว่าวงสูงเท่า

การค้นพบของซัมเนอร์ถือได้ว่าเป็นพื้นฐานสำคัญของการเดินเรือดาราศาสตร์สมัยใหม่ และต่อมาชาวฝรั่งเศสชื่อ ADOLPHE-LAURENT-ANATOLE MARCQ DE BLONDE DE SAINT-HILAIRE ได้ศึกษาการค้นพบของซัมเนอร์และหลักการวงสูงเท่าเพิ่มเติม และพบว่ามุมสูงของวัตถุท้องฟ้าที่วัดได้สามารถใช้บอกรัศมีของวงสูงเท่าได้ กล่าวคือที่มุม ๙๐ องศา วงสูงเท่าจะมีรัศมีเป็นศูนย์ (ผู้ตรวจอยู่ใต้ดาวพอดี) และมุมที่ลดลงทุก ๑ ลิปดา จะเท่ากับรัศมีที่เพิ่มขึ้น ๑ ไมล์ และ SAINT-HILAIRE ได้อาศัยหลักการดังกล่าวในการคิดค้นวิธีการหาที่เรือดาราศาสตร์แบบ ALTITUDE INTERCEPT และได้ตีพิมพ์เป็นหนังสือในปี ค.ศ.๑๘๗๕ (พ.ศ.๒๔๑๘) หรือ ๓๘ ปี หลังจากการค้นพบของซัมเนอร์ วิธีการหาที่เรือดาราศาสตร์แบบ ALTITUDE INTERCEPT ของ SAINT-HILAIRE นับเป็นต้นแบบของวิธีที่ใช้ในปัจจุบัน และถือได้ว่าเป็นขั้นสูงสุดของการพัฒนาทฤษฎีการเดินเรือดาราศาสตร์ แต่สูตรการคำนวณที่ใช้ค่อนข้างยุ่งยากและซับซ้อน ต่อมาในช่วงต้นศตวรรษที่ ๒๐ นาย  OGURA ชาวญี่ปุ่น จึงได้ริเริ่มการใช้ตาราง SIGHT REDUCTION ซึ่งเป็นวิธีที่ใช้มาจนถึงปัจจุบัน

 เข้าสู่ยุคแห่งการเดินเรืออิเล็กทรอนิกส์

วิธี ALTITUDE INTERCEPT ของ SAINT-HILAIRE ทำให้การเดินเรือดาราศาสตร์ได้พัฒนามาจนถึงขั้นสูงสุด และนักเดินเรือได้ใช้วิธีนี้เป็นหลักในการเดินเรือมานับร้อยปี ในยุคนี้การเดินเรือเริ่มเข้าสู่ยุคแห่งความเป็นศาสตร์มากขึ้น ทั้งในด้านของเครื่องมือและอุปกรณ์ เช่น เครื่องวัดดาว และนาฬิกาโครโนเมตร และในด้านความรู้ทางดาราศาสตร์ คณิตศาสตร์ และเทคนิคการคำนวณหาที่เรือ

ในช่วงปลายศตวรรษที่ ๑๙ ถึงต้นศตวรรษที่ ๒๐ การพัฒนาวิทยาศาสตร์และเทคโนโลยีเน้นหนักไปทางการพัฒนาระบบขับเคลื่อนเรือมากกว่าการเดินเรือและการหาที่เรือ โดยการพัฒนาระบบขับเคลื่อนเรือเริ่มมาจากการนำเครื่องจักรไอน้ำที่ใช้เชื้อเพลิงถ่านหินมาใช้แทนใบเรือในช่วงกลางศตวรรษที่ ๑๙ ทำให้นักเดินเรือไม่ต้องพึ่งพากระแสลมและกระแสน้ำตามธรรมชาติอีกต่อไป (THOMAS NEWCOMEN และ JAMES WATT ได้ประดิษฐ์และพัฒนาเครื่องจักรไอน้ำในศตวรรษที่ ๑๘) จากนั้นระบบขับเคลื่อนเรือก็ได้ถูกพัฒนาเรื่อยมาจากเครื่องจักรไอน้ำ มาจนถึงเครื่องยนต์ดีเซลและเครื่องยนต์กังหันไอน้ำ

การเดินเรือดาราศาสตร์ได้พัฒนามาจนสามารถหาที่เรือได้ความแม่นยำภายในระยะไม่กี่ไมล์ แต่เมฆและสภาพอากาศปิดอาจทำให้นักเดินเรือไม่สามารถหาที่เรือในทะเลได้เป็นเวลานานหลายวัน อย่างไรก็ดีการใช้ที่เรือรายงานประกอบกับที่เรือดาราศาสตร์ยังคงเพียงพอในยุคของเรือใบซึ่งเรือมีความเร็วต่ำ ต่อมาการพัฒนาระบบขับเคลื่อนเรือส่งผลให้เรือมีความเร็วสูงขึ้นมาก และเรือเดินสมุทรได้กลายเป็นอุตสาหกรรมขนาดใหญ่ที่ต้องการความแม่นยำและความปลอดภัยสูง ประกอบกับการพัฒนาระบบอิเล็กทรอนิกส์ในช่วงต้นศตวรรษที่ ๒๐ ทำให้การเดินเรือและระบบหาตำบลเรือที่ได้ผ่านวิวัฒนาการอีกขั้นหนึ่งเข้าสู่ยุคแห่งการเดินเรืออิเล็กทรอนิกส์ที่สามารถหาที่เรือได้อย่างแม่นยำในทุกสภาพอากาศ

 ระบบวิทยุหาที่เรือ (RADIO NAVIGATION SYSTEM)

ระบบวิทยุหาที่เรือใช้การแพร่คลื่นวิทยุในการหาตำบลที่เรือ โดยแบ่งออกได้เป็นสองประเภทใหญ่ๆ คือระบบวิทยุหาทิศซึ่งให้ค่าแบริ่งจากการส่งคลื่นวิทยุเป็นบีมเส้นตรง (ระบบ A-N) หรือการใช้สายอากาศแบบหาทิศ (RADIO DIRECTION FINDER) และระบบไฮเปอร์บอลิค (HYPERBOLIC RADIO NAVIGATION) ซึ่งให้เส้นตำบลที่จากการเปรียบเทียบเวลาหรือเฟสจากสถานีส่งสามแห่งขึ้นไป

ความเป็นมาของการค้นพบคลื่นวิทยุ เริ่มขึ้นเมื่อปี ค.ศ. ๑๘๓๒ (พ.ศ.๒๓๘๕ – ตรงกับสมัยรัชกาลที่ ๓) ไมเคิล ฟาราเดย์ (MICHAEL FARADAY) ชาวอังกฤษได้เสนอทฤษฎีว่าด้วยคลื่น พลังงานที่เกิดจากความสัมพันธ์ระหว่างกระแสไฟฟ้าและสนามแม่เหล็ก

แต่ความรู้ทางคณิตศาสตร์และฟิสิกส์ในสมัยนั้นยังไม่สามารถพิสูจน์ทฤษฎีของฟาราเดย์ได้ ต่อมาในปี ค.ศ. ๑๘๕๕ (พ.ศ.๒๓๙๘ – ตรงกับสมัยรัชกาลที่ ๔) เจมส์ แมกซ์เวลล์ (JAMES MAXWELL) ชาวอังกฤษได้พิสูจน์ทฤษฎี ความสัมพันธ์ระหว่างไฟฟ้าและสนามแม่เหล็กของฟาราเดย์ได้ด้วยสมการทางคณิตศาสตร์ แต่ก็ยังไม่มาใครสามารถพิสูจน์ทฤษฎีและสมการ ดังกล่าวได้ด้วยการทดลอง จนกระทั่งในปี ค.ศ.๑๘๘๗ (พ.ศ.๒๔๓๐ – ตรงกับสมัยรัชกาลที่ ๕) ไฮน์ริค เฮิรตซ์ (HEINRICH HERTZ) ชาวเยอรมัน ได้ออกแบบการทดลองแพร่คลื่นแม่เหล็กไฟฟ้า หรือคลื่นวิทยุ โดยใช้ไฟฟ้ากระแสสลับ ความถี่สูง และสามารถวัดความยาวคลื่นและความถี่ได้ตรงตาม การคำนวณด้วยสมการของแมกซ์เวลล์

สงครามโลกทั้งสองครั้งในช่วงต้นศตวรรษที่ ๒๐ มีส่วนสำคัญในการเร่งการพัฒนาเทคโนโลยีในหลายๆ ด้าน และคลื่นวิทยุได้ถูกนำมาใช้ในการนำทางเครื่องบินทิ้งระเบิดระยะไกลอย่างได้ผล โดยรูปแบบแรกของระบบนำทางด้วยคลื่นวิทยุเรียกว่าระบบ A-N ซึ่งใช้การส่งสัญญาณมอร์ส A (• –) และ N (– •) จากสายอากาศสองแห่งพร้อมกัน หากนักบินรักษาระยะระหว่างสายอากาศทั้งสองแห่งเท่ากันก็จะได้ยินเสียงสัญญาณมอร์ส A และ N ซ้อนกันเป็นโทนสัญญาณคงที่ แต่ถ้านักบินอยู่ใกล้สายอากาศเสาใดเสาหนึ่งมากกว่าก็จะได้ยินสัญญาณมอร์สจากเสานั้นดังกว่า โดยฝ่ายเยอรมันได้ใช้ระบบนำทางด้วยคลื่นวิทยุนี้ในการนำเครื่องบินไปทิ้งระเบิดบนเกาะอังกฤษ ทำให้สามารถทิ้งระเบิดโจมตีอังกฤษได้แม้ในเวลากลางคืน

ระบบ A-N สามารถให้แบริ่งคงที่ได้เพียงแบริ่งเดียวจากสายอากาศหนึ่งคู่ ซึ่งเหมาะกับการนำเครื่องบินเข้าหาที่หมาย แต่ไม่เหมาะกับการเดินเรือในทะเล จึงได้มีการพัฒนาเครื่องวิทยุหาทิศ (RADIO DIRECTION FINDER – RDF) ขึ้น ซึ่งสามารถใช้บอกแบริ่งจากสถานีส่งได้ทุกทิศทาง และนักเดินเรือสามารถหาที่เรือได้จากจุดตัดระหว่างเส้นแบริ่งสองเส้นจากสถานีส่งสองแห่ง

ระบบวิทยุหาที่เรืออีกประเภทหนึ่งเรียกว่าระบบวิทยุหาที่เรือแบบไฮเปอร์บอลิค (HYPERBOLIC RADIONAVIGATION) ได้ถูกพัฒนาขึ้นในช่วงปลายสงครามโลกครั้งที่สอง ระบบวิทยุหาที่เรือประเภทนี้อาศัยความต่างของเวลาที่สัญญาณวิทยุจากสถานีส่งสองแห่งเดินทางมาถึงเครื่องรับ โดยค่าความต่างของเวลาจากสถานีส่งหนึ่งคู่จะให้เส้นตำบลที่แบบไฮเปอร์บอลิค (HYPERBOLIC LINE OF POSITION) หนึ่งเส้น และตำบลที่เรือแน่นอน (ELECTRONIC FIX) สามารถหาได้จากจุดตัดของเส้นตำบลที่ไฮเปอร์บอลิคสองเส้น โดยอาศัยสถานีส่งสองคู่ (จากสถานีส่งอย่างน้อยสามแห่ง) ระบบวิทยุหาที่เรือแบบไฮเปอร์บอลิคแบบแรกที่ถูกพัฒนาขึ้นคือระบบ GEE ของอังกฤษในปี ค.ศ.๑๙๔๒ (พ.ศ.๒๔๘๕) ซึ่งใช้ย่านความถี่ ๓๐ – ๘๐ เมกะเฮิรตซ์ และต่อมาในปี ค.ศ.๑๙๔๓ (พ.ศ.๒๔๘๖) สหรัฐอเมริกาก็ได้พัฒนาระบบ LORAN (ย่อมาจาก LONG RANGE NAVIGATION) ซึ่งประกอบด้วยสถานีส่งกว่า ๗๐ แห่ง ส่งสัญญาณในย่านความถี่ ๑๘๕๐ – ๑๙๕๐ กิโลเฮิรตซ์ มีระยะทำการกว่า ๖๐๐ ไมล์ ครอบคลุมพื้นที่เกือบ หนึ่งในสามของโลก

การพัฒนาเทคโนโลยีวิทยุความถี่ต่ำหลังจากสงครามโลกครั้งที่ ๒ ทำให้ระบบ LORAN ได้ถูกพัฒนาต่อมาเป็น LORAN-C ในช่วงต้นทศวรรษที่ ๑๙๕๐ ระบบ LORAN-C ประกอบด้วยกลุ่มสถานีส่งหลายแห่งห่างกันหลายร้อยไมล์ในหลายประเทศ โดยแต่ละกลุ่มประกอบด้วยสถานีแม่ ๑ สถานีและสถานีย่อย ๒ – ๔ สถานี ซึ่งสถานีแม่และสถานีย่อยนี้จะส่งสัญญาณวิทยุแบบ PULSE ด้วยความถี่ ๑๐๐ กิโลเฮิรตซ์ ออกมาตามลำดับ จากนั้นเครื่องรับบนเรือจะคำนวณค่าความต่างระหว่างระยะทางถึงสถานีแม่กับสถานีย่อยจากเวลาต่างของคลื่นวิทยุที่ได้รับ และแสดงค่าระยะต่างนั้นสำหรับพล๊อตบนแผนที่พิเศษที่มีเส้นไฮเปอร์บอลิค หรือแสดงค่าละติจูดและลองจิจูดโดยตรง ระบบ LORAN-C ให้ตำบลที่ที่มีความถูกต้อง (ACCURACY) และความแม่นยำ (PRECISION) สูง โดยมีค่าความถูกต้อง ๐.๑ – ๐.๒ ไมล์ และความแม่นยำ ๕๐ เมตร

ระบบวิทยุหาที่เรือที่สำคัญอีกระบบคือระบบ OMEGA ซึ่งถูกริเริ่มพัฒนาขึ้นโดย ทร.สหรัฐฯ ในปี ค.ศ.๑๙๔๗ (ก่อนหน้าระบบ LORAN-C เล็กน้อย) แต่เนื่องจากปัญหาความยุ่งยากทางเทคนิค ทำให้ต้องใช้เวลากว่า ๒๐ ปี กว่าจะเริ่มใช้งานได้ และสามารถใช้งานได้โดยสมบูรณ์ใน ปี ค.ศ.๑๙๘๒ (พ.ศ.๒๕๒๕) ระบบ OMEGA ประกอบด้วยสถานีส่ง ๘ สถานีทั่วโลก แต่ละสถานีตั้งอยู่ห่างกัน ๕,๐๐๐ – ๖,๐๐๐ ไมล์ ส่งสัญญาณวิทยุในย่านความถี่ต่ำมาก (๑๐ – ๑๔ กิโลเฮิรตซ์) ให้ระยะครอบคลุมทั่วโลก ระบบ OMEGA เป็นระบบวิทยุหาที่เรือแบบไฮเปอร์บอลิคเช่นเดียวกับระบบ LORAN-C แต่ต่างกันตรงที่ระบบ OMEGA ส่งสัญญาณแบบ CW ความถี่ต่ำมาก ๔ ความถี่ และใช้การเปรียบเทียบเฟสของคลื่น CW ในการคำนวณหาตำบลที่ ระบบ OMEGA ให้ที่เรือที่มีความถูกต้องแม่นยำ ๑ – ๒ ไมล์ ตลอด ๒๔ ชั่วโมง ทั่วโลก

การค้นพบคลื่นวิทยุของเฮิรตซ์นอกจากจะทำให้เกิดการพัฒนาระบบหาที่เรือด้วยวิทยุแล้ว คลื่นวิทยุยังได้ถูกนำมาใช้ในการตรวจจับวัตถุในระยะไกล ในปี ค.ศ. ๑๙๓๕ (พ.ศ.๒๔๗๘) ROBERT WATSON-WATT ชาวอังกฤษได้คิดค้นระบบตรวจจับเครื่องบินด้วยการแพร่คลื่นวิทยุออกไปแล้วตรวจจับคลื่นที่สะท้อนกลับมา และในปี ค.ศ.๑๙๓๙ อังกฤษได้สร้างสถานีเรดาร์ขึ้นหลายแห่งตามแนวฝั่งตะวันออกเพื่อตรวจจับเครื่องบินทิ้งระเบิดที่จะมาโจมตีเกาะอังกฤษ โดยแต่ละสถานีจะโทรศัพท์แจ้งข้อมูลเป้าไปยังศูนย์รวบรวมข้อมูลกลางซึ่งทำหน้าที่พล๊อตติดตามสถานการณ์รวม และอีกไม่กี่ปีต่อมาได้มีการพัฒนาหลอด MAGNETRON ทำให้เรดาร์มีความยาวคลื่นสั้นลงและมีกำลังส่งสูงขึ้น ส่งผลให้สายอากาศมีขนาดเล็กลงจนกระทั่งสามารถนำมาติดตั้งบนเรือได้ จึงได้เกิดการพัฒนาเรดาร์เดินเรือขึ้น

ระบบเดินเรือด้วยแรงเฉื่อน (INERTIAL NAVIGATION SYSTEM)

ระบบเดินเรือด้วยแรงเฉื่อยถูกพัฒนาขึ้นในปลายทศวรรษที่ ๑๙๕๐ เพื่อใช้กับเรือดำน้ำ ทำให้เรือดำน้ำสามารถทราบตำบลที่ได้โดยไม่ต้องโผล่ขึ้นมาเหนือน้ำ และต่อมาระบบเดินเรือด้วยแรงเฉื่อยได้ถูกนำมาใช้กับเรือ และอากาศยาน โดยระบบเดินเรือด้วยแรงเฉื่อยติดตามการเคลื่อนที่ของเรือโดยไม่ต้องอาศัยแหล่งอ้างอิงจากภายนอก (เช่นสัญญาณวิทยุหรือดาวต่างๆ) ด้วยการวัดอัตราเร่งของเรือและนำมาคำนวณเป็นการเคลื่อนที่ของเรือ ดังนั้นระบบเดินเรือด้วยแรงเฉื่อยจึงอาจเรียกได้ว่าเป็นระบบเดินเรือรายงานที่สามารถตรวจจับการเคลื่อนที่ของเรือได้อย่างแม่นยำด้วยอุปกรณ์อิเล็กทรอนิกส์ที่ซับซ้อนนั่นเอง

ที่มาของระบบเดินเรือด้วยแรงเฉื่อยเริ่มต้นมาจากการประดิษฐ์ไยโร (GYROSCOPE) โดย ผู้ที่คิดประดิษฐ์ไยโรเป็นคนแรกคือนักฟิสิกส์ชาวฝรั่งเศสชื่อ JEAN BERNARD LEON FOUCAULT เมื่อปี ค.ศ. ๑๘๕๒ (พ.ศ.๒๓๙๕ – ตรงกับสมัยรัชกาลที่ ๔) โดยสร้างเป็นลูกข่างที่มีแกนหมุนอยู่ในวงแหวนที่หมุนได้โดยอิสระ เพื่อใช้เป็นแกนอ้างอิงในการศึกษาการหมุนของโลก เนื่องจากลูกข่างไยโร (หรือมวลที่หมุนรอบแกนด้วยความเร็วสูง) มีคุณสมบัติในการรักษาแนวแกนหมุนให้คงที่เมื่อไม่มีแรงกระทำจาก ภายนอก อย่างไรก็ดี FOUCAULT ไม่ประสบความสำเร็จนักในการใช้ไยโรเพื่อวัดการหมุนของโลกเนื่องจากปัญหาแรงเสียดทานในแกนหมุนและวงแหวน เขาจึงได้หันไปใช้การแกว่งของลูกตุ้มยาวเพื่อวัดการหมุนของโลกแทน

ในปี ค.ศ. ๑๘๙๐ (พ.ศ.๒๔๓๓ – ตรงกับสมัยรัชกาลที่ ๕) G.M. HOPKINS ได้คิดประดิษฐ์ไยโรที่หมุนด้วยมอเตอร์ไฟฟ้า และอีกเพียงสิบกว่าปีต่อมา นักประดิษฐ์ชาวเยอรมันและอเมริกันก็ได้ประดิษฐ์เข็มทิศไยโรขึ้นในเวลาไล่เลี่ยกัน ในปี ค.ศ.๑๙๐๓ (พ.ศ.๒๔๔๖) HERMAN ANSCHUTZ ชาวเยอรมันได้ประดิษฐ์เข็มทิศไยโร (หรือไยโรที่มีแกนหมุนชี้ไปยังทิศเหนือตลอดเวลา) ขึ้นเพื่อแก้ปัญหาผลกระทบจากอำนาจแม่เหล็กเรือต่อเข็มทิศแม่เหล็ก เข็มทิศไยโรมีความ ซับซ้อนมากกว่าไยโรธรรมดาเนื่องจากไยโรธรรมดาจะรักษาแกนหมุนให้คงที่โดยไม่ขึ้นกับการหมุนของโลก ทำให้แกนหมุนของไยโรชี้ผิดไปจากทิศเหนือจริงเมื่อโลกหมุน เข็มทิศไยโรอาศัยแรงปรากฏที่เกิดจากการหมุนรอบตัวเองของโลกในการรักษาแกนหมุนให้ตรงกับทิศเหนือจริงตลอดเวลา ขนาดของแรงปรากฏนี้จะลดลงเมื่อเข้าใกล้แกนหมุนของโลก ดังนั้นเข็มทิศไยโรจึงไม่สามารถใช้การได้ที่ละติจูดที่สูง (ใกล้ขั้วโลก) เนื่องจากขนาดของแรงปรากฏจากการหมุนของโลกไม่ เพียงพอ ในปี ค.ศ.๑๙๐๘ เอลเมอร์ เสปอร์รี่ (ELMER SPERRY) ชาวอเมริกันก็ได้ประดิษฐ์เข็มทิศไยโรขึ้นเช่นกันโดยใช้หลักการเดียวกัน และเสปอร์รี่ได้สร้างเครื่องถือท้ายเรืออัตโนมัติ (AUTOPILOT) ขึ้นในปี ค.ศ.๑๙๑๑ โดยอาศัยเข็มทิศไยโรในการควบคุมทิศทาง เรียกว่าเครื่อง METAL MIKE

ระบบเดินเรือด้วยแรงเฉื่อยอาศัยไยโรในการรักษาแกนอ้างอิงในการวัดอัตราเร่งให้คงที่ โดยระบบเดินเรือด้วยแรงเฉื่อยประกอบด้วยเครื่องวัดอัตราเร่ง (ACCELEROMETER) สองตัวสำหรับวัดอัตราเร่งของเรือตามแนวเหนือ – ใต้ และตะวันออก – ตะวันตก และไยโรสำหรับรักษาแนวของเครื่องวัดอัตราเร่งให้คงที่และขนานกับพื้นโลกตลอดเวลาโดยใช้มอเตอร์ไฟฟ้าหมุนฐานของเครื่องวัดอัตราเร่งให้ตรงกับแกนหมุนของไยโรสามแกน โดยเครื่องวัดอัตราเร่งสามารถวัดค่าอัตราเร่งได้จากแรงที่กระทำต่อมวลตามกฎ F = MA ของนิวตัน จากนั้นระบบจะคำนวณการเคลื่อนที่ของเรือจากผลรวมของอัตราเร่งจากทั้งสองแกน อย่างไรก็ดีแรงเสียดทานและความไม่สมบูรณ์เล็กน้อยอื่นๆ ของระบบไยโรทำให้ระบบเดินเรือด้วยแรงเฉื่อยค่อยๆ สะสมค่าความ คลาดเคลื่อนทีละน้อย ตำบลที่ที่ได้จึงจำเป็นต้องถูกตรวจสอบกับระบบหาที่เรือด้วยวิทยุหรือ ดาวเทียมเป็นระยะๆ

เนื่องจากแรงเสียดทานของไยโรเป็นสาเหตุสำคัญของการสะสมค่าความคลาดเคลื่อนในระบบเดินเรือด้วยแรงเฉื่อย จึงได้มีความพยายามที่จะแก้ปัญหาแรงเสียดทางนี้ด้วยการพัฒนาไยโรแบบ ESG หรือ ELECTROSTATIC GYRO ขึ้น (บางตำราก็ว่า ESG ย่อมาจาก ELECTRICALLY STABILIZED GYRO) โดยไยโรแบบ ESG ลดแรงเสียดทางด้วยใช้แรงจากสนามไฟฟ้าในการ รองรับ “ลูกข่าง” หรือมวลที่หมุนด้วยความเร็วสูงภายในแท่นสุญญากาศ ไยโรแบบ ESG ช่วยลดค่าความคลาดเคลื่อนสะสมในระบบเดินเรือด้วยแรงเฉื่อยได้ในระดับหนึ่ง แต่ยังไม่สามารถกำจัดค่าความคลาดเคลื่อนสะสมนี้ได้ทั้งหมด และตำบลที่ที่ได้จึงยังจำเป็นต้องถูกเปรียบเทียบตรวจสอบกับระบบหาที่เรืออื่นอยู่

ระบบเดินเรือด้วยแรงเฉื่อยแบบใหม่ใช้เลเซอร์ไยโร (LASER GYRO หรือ RING LASER GYRO) แทนไยโรที่ใช้มวลหมุนด้วยความเร็วสูงแบบเดิม เลเซอร์ไยโรใช้เส้นทางเดินของแสงเลเซอร์เป็น วงแหวนรอบแกนในการวัดการหมุนรอบแกนนั้น โดยเครื่องกำเนิดแสงเลเซอร์จะสร้างลำแสงเลเซอร์ที่มีเฟสตรงกันสองลำในทิศทางตรงกันข้ามกันตามเส้นทางเดินรอบแกน เมื่อมีการหมุนรอบแกน เส้นทางเดินของลำแสงที่เคลื่อนที่ไปตามการหมุนจะทำให้ลำแสงหนึ่งมีทิศทางเดียวกับการหมุน และลำแสงอีกลำมีทิศทางตรงกันข้ามกับการหมุน และเกิดความแตกต่างระหว่างเฟสของลำแสงสองลำขึ้น ซึ่งขนาดของความแตกต่างระหว่างเฟสนี้จะขึ้นอยู่กับความเร็วของการหมุน เนื่องจากเลเซอร์ไยโรไม่ได้อาศัยมวลที่หมุนด้วยความเร็วสูงในการรักษาแกนอ้างอิง จึงไม่มีปัญหาค่าความคลาดเคลื่อนสะสมเนื่องจากแรงเสียดทานแบบไยโรลูกข่าง

ระบบหาที่เรือด้วยดาวเทียม (SATELLITE NAVIGATION SYSTEM)

ระบบเดินเรือด้วยแรงเฉื่อยด้วยเลเซอร์ไยโรจะสามารถติดตามการเคลื่อนที่ของเรือได้ ถูกต้องแม่นยำกว่าการเดินเรือรายงานแบบดั้งเดิมมาก แต่วิธีเดียวในการยืนยันความถูกต้องของ ตำบลที่เรือยังคงต้องอาศัยจุดอ้างอิงจากภายนอกตัวเรือ และด้วยเหตุผลด้านความปลอดภัย ระบบ เดินเรือด้วยแรงเฉื่อยจึงมักถูกใช้ประกอบกับระบบหาที่เรือที่อาศัยแหล่งอ้างอิงจากภายนอก เช่นระบบหาที่เรือด้วยวิทยุ อย่างไรก็ดีระบบหาที่เรือด้วยวิทยุในช่วงกลางศตวรรษที่ ๒๐ ยังมีข้อจำกัดในด้านพื้นที่ครอบคลุมและความถูกต้องแม่นยำ โดยระบบ LORAN-C ให้ตำบลที่ที่มีความถูกต้อง แม่นยำสูง แต่มีพื้นที่ครอบคลุมจำกัด และความถูกต้องแม่นยำจะลดลงเมื่อระยะจากสถานีส่ง เพิ่มมากขึ้น ส่วนระบบ OMEGA ใช้คลื่นวิทยุย่านความถี่ต่ำมากซึ่งให้การครอบคลุมทั่วโลก แต่การใช้คลื่นวิทยุย่านความถี่ต่ำมากซึ่งมีขนาดความยาวคลื่นกว่าสิบไมล์ทำให้ให้ความถูกแม่นยำลดลง

การพัฒนาระบบหาที่เรือด้วยดาวเทียมเกิดมาจากความต้องการระบบที่สามารถให้ตำบลที่ ที่มีความถูกต้องแม่นยำสูงตลอด ๒๔ ชั่วโมง และมีพื้นที่ครอบคลุมทั่วโลก โดยแนวความคิดในการนำดาวเทียมมาใช้หาที่เรือได้ถือกำเนิดขึ้นมาพร้อมๆ กับความสำเร็จในการส่งดาวเทียมขึ้นสู่วงโคจรเป็นครั้งแรกในปี ค.ศ. ๑๙๕๗ (พ.ศ.๒๕๐๐) โดยนักวิทยาศาสตร์ที่สถาบันวิจัย APPLIED PHYSICS LABORATORY ณ มหาวิทยาลัย JOHNS HOPKINS ได้สังเกตปรากฏการณ์ DOPPLER ของสัญญาณวิทยุจากดาวเทียม SPUTNIK ของสหภาพโซเวียตขณะที่ดาวเทียมเคลื่อนที่ผ่านฝั่งตะวันออกของสหรัฐอเมริกา และพบว่าลักษณะของปรากฏการณ์ DOPPLER ของสัญญาณที่ส่งออกมาจากดาวเทียมผ่านสถานีภาคพื้นที่ทราบตำบลที่แน่นอนนั้น สามารถนำมาใช้คำนวณหา วงโคจรของดาวเทียม ได้ และในทางกลับกัน ปรากฏการณ์ DOPPER จากดาวเทียมที่ทราบวงโคจรแน่นอนสามารถนำมาใช้คำนวณหาตำบลที่บน พื้นโลกได้ ในปีต่อมาสถาบันวิจัย APPLIED PHYSICS LABORATORY ได้ร่วมมือกับกองทัพเรือสหรัฐฯ ในการสร้างระบบหาที่เรือด้วยดาวเทียมขึ้น โดยอาศัยหลักการของปรากฏการณ์ DOPPLER เรียกว่าระบบ NAVSAT (NAVY NAVIGATION SATELLITE SYSTEM) หรือที่เป็นที่รู้จักในชื่อพลเรือนว่าระบบ TRANSIT

ปรากฏการณ์ DOPPLER และระบบ NAVSAT

ปรากฏการณ์ DOPPLER คือการที่ความถี่คลื่นเกิดการเปลี่ยนแปลงสูงขึ้นเมื่อแหล่งกำเนิดคลื่นและผู้รับมีการเคลื่อนที่สัมพันธ์เข้าหากัน และความถี่คลื่นจะเกิดการเปลี่ยนแปลงลดลงเมื่อแหล่งกำเนิดคลื่นและผู้รับมีการเคลื่อนที่สัมพันธ์ออกจากกัน โดยขนาดของการเปลี่ยนแปลงขึ้นอยู่กับความเร็วสัมพันธ์

ระบบ NAVSAT ใช้ลักษณะการเปลี่ยนแปลงความถี่ (DOPPLER SHIFT) ของสัญญาณที่ส่งออกมาจากดาวเทียมในการคำนวณหาตำบลที่ โดยการเปลี่ยนแปลงความถี่ของสัญญาณขณะที่ดาวเทียมเคลื่อนที่ผ่านตำบลที่ของเครื่องรับบนพื้นโลกแบ่งออกได้เป็น ๓ ช่วง ช่วงแรกคือช่วงที่ดาวเทียมกำลังเคลื่อนที่เข้าหาเครื่องรับ ความถี่ของสัญญาณที่รับได้จะมีค่าสูงและค่อยๆ ลดลงเมื่อดาวเทียมเคลื่อนที่เข้าใกล้เครื่องรับเนื่องจากความเร็วสัมพันธ์ในการเคลื่อนที่เข้าหาลดลง ช่วงที่สองคือช่วงที่ดาวเทียมผ่านเหนือเครื่องรับ ความถี่ของสัญญาณที่รับได้จะมีค่าเท่ากับความถี่ที่ส่งออกมาจริง และช่วงที่สามคือช่วงที่ดาวเทียมเคลื่อนที่ออกจากเครื่องรับ ความถี่ของสัญญาณที่รับได้จะมีค่าลดลงไปตามระยะห่างจากเครื่องรับ

ระบบ NAVSAT เริ่มใช้ในปี ค.ศ.๑๙๖๔ (พ.ศ.๒๕๐๗) ส่วนประกอบหลักของระบบประกอบด้วยดาวเทียม ๑๓ ดวง (สำรอง ๓ ดวง) โคจรรอบโลกที่ความสูง ๖๐๐ ไมล์ ด้วยความเร็วประมาณ ๕ ไมล์ต่อวินาที (ดาวเทียมแต่ละดวงโคจรรอบโลกทุก ๑๐๗ นาที) สถานีภาคพื้นทำหน้าที่ติดตามดาวเทียมในวงโคจรและส่งค่าแก้ต่างๆ ให้กับดาวเทียม และเครื่องรับสัญญาณและคำนวณตำบลที่บนเรือ โดยดาวเทียมในระบบจะส่งสัญญาณที่ความถี่ ๑๕๐ และ ๔๐๐ เมกะเฮิรตซ์ การเปรียบเทียบการเปลี่ยนแปลงความถี่จากดาวเทียมสองดวงจะให้เส้นตำบลที่ ๑ เส้น ส่วนตำบลที่แน่นอน (FIX) จะได้จากการเปรียบเทียบการเปลี่ยนแปลงความถี่จากดาวเทียมอย่างน้อย ๓ ดวง (ปกติจะใช้ดาวเทียม ๔ – ๗ ดวงเพื่อเพิ่มความถูกต้อง) โดยวงโคจรของดาวเทียมแต่ละดวงจะ ครอบคลุมทุกจุดบนพื้นโลกอย่างน้อยวันละ ๒ ครั้ง และการหาตำบลที่แน่นอนด้วยดาวเทียม ๔ ดวงจะทำได้ทุก ๓๕ – ๙๕ นาที

ระบบหาที่เรือด้วยดาวเทียม GLOBAL POSITIONAL SYSTEM หรือ GPS ในปัจจุบัน ถือกำเนิดมาจากการริเริ่มพัฒนาระบบ NAVSTAR GPS (NAVIGATION SYSTEM USING TIMING AND RANGING GLOBAL POSITIONING SYSTEM) โดยกระทรวงกลาโหมสหรัฐฯ ในปี ค.ศ.๑๙๗๓ (พ.ศ.๒๕๑๖) เพื่อใช้เป็นระบบหาตำบลที่แบบสามมิติที่ให้ทั้งตำบลที่และความสูงได้อย่างต่อเนื่องสำหรับเรือและอากาศยานในกองทัพ แทนระบบ TRANSIT ที่ให้ตำบลที่เพียงสองมิติเป็นระยะๆ ทุก ๓๕ – ๙๕ นาที

ระบบ GPS ประกอบด้วยดาวเทียม ๒๘ ดวง โคจรรอบโลกที่ความสูง ๑๐,๙๐๐ ไมล์ แต่ละดวงโคจรรอบโลกทุก ๑๒ ชั่วโมง สถานีภาคพื้น ๕ แห่งทำหน้าที่ติดตามดาวเทียมในวงโคจรและส่งข้อมูลให้กับสถานีควบคุมหลักที่มลรัฐโคโลราโด และเครื่องรับสัญญาณทำหน้าที่คำนวณหาตำบลที่

การหาตำบลที่ในระบบ GPS ใช้หลักการ TIMING AND RANGING หรือการคำนวณระยะทางจากเวลาที่สัญญาณจากดาวเทียมเดินทางมาถึงเครื่องรับ โดยดาวเทียมแต่ละดวงจะส่งสัญญาณที่ความถี่ ๑๕๗๕.๔๒ เมกะเฮิรตซ์ (เรียกว่าความถี่ L1) และความถี่ ๑๒๒๗.๖๐ เมกะเฮิรตซ์ (เรียกว่าความถี่ L2) ข้อมูลในความถี่ L1 ประกอบด้วยสัญญาณหยาบ (COARSE ACQUISITION CODE – C/A CODE) สำหรับผู้ใช้ทั่วไป (STANDARD POSITIONING SERVICE – SPS) และสัญญาณละเอียด (PRECISION CODE – P CODE) ซึ่งเข้ารหัสสำหรับใช้ในกองทัพสหรัฐฯ เท่านั้น ส่วนข้อมูลในความถี่ L2 ประกอบด้วยสัญญาณ P CODE เพียงอย่างเดียว การส่งสัญญาณ P CODE ในสองความถี่ทำให้เครื่องรับสามารถเปรียบหาผลกระทบจากบรรยากาศชั้น IONOSPHERE เพื่อลดความคลาดเคลื่อนจากการรบกวนของชั้นบรรยากาศ

ลักษณะวงโคจรของดาวเทียม GPS ถูกออกแบบมาให้ทุกพื้นที่บนโลกสามารถมองเห็น ดาวเทียมได้อย่างน้อย ๔ ดวงตลอดเวลา โดยสัญญาณจากดาวเทียมหนึ่งดวงจะให้เส้นตำบลที่หนึ่งเส้นที่เกิดจากจุดตัดระหว่างพื้นผิวโลกกับทรงกลมที่มีรัศมีเท่ากับระยะทางจากดาวเทียม ตำบลที่แบบสองมิติจะได้จากจุดตัดระหว่างทรงกลมรัศมีจากดาวเทียม ๒ ดวงกับพื้นผิวโลก แต่เนื่องจากนาฬิกาในเครื่องรับอาจมีความคลาดเคลื่อนได้ ดังนั้นจึงต้องใช้ดาวเทียมดวงที่สามเพื่อแก้ค่าความคลาดเคลื่อนแบบเดียวกับการหาที่เรือชายฝั่งด้วยที่หมาย ๓ แห่ง และตำบลที่แบบสามมิติ (ตำบลที่และความสูง) จะหาได้จากดาวเทียมอย่างน้อย ๓ ดวง และใช้ดาวเทียมดวงที่ ๔ เพื่อแก้ค่าความคลาดเคลื่อน

ระบบ GPS มีมาตรการที่เกี่ยวข้องกับความปลอดภัยอยู่ ๒ มาตรการ คือการเติมค่าความคลาดเคลื่อนลงใน C/A CODE เพื่อลดความถูกต้องแม่นยำ เรียกว่ามาตรการ SELECTIVE AVAILABILITY และการป้องกันการรบกวนและปลอมแปลงสัญญาณ P CODE เรียกว่ามาตรการ ANTI-SPOOFING ต่อมาเมื่อวันที่ ๑ พฤษภาคม ค.ศ.๒๐๐๐ (พ.ศ.๒๕๔๓) รัฐบาลสหรัฐฯ ได้ประกาศยุติการใช้มาตรการ SELECTIVE AVAILABILITY ซึ่งเพิ่มความถูกต้องของบริการ SPS สำหรับผู้ใช้ทั่วไป แต่รัฐบาลสหรัฐฯ ยังคงมีขีดความสามารถในการเริ่มใช้มาตรการ SELECTIVE AVAILABILITY อีกเมื่อเห็นว่ามีความจำเป็น

การหา GPS ด้วยการคำนวณค่าความคลาดเคลื่อนของสัญญาณ GPS จากสถานีฝั่งที่ทราบตำบลที่ แน่นอน จากนั้นสถานีฝั่งจะส่งค่าแก้ให้กับเครื่องรับในบริเวณใกล้เคียง ระบบ DGPS สามารถให้ตำบลที่ได้ถูกต้องแม่นยำเทียบเท่ากับบริการ PPS และสามารถแก้ค่าความคลาดเคลื่อนจากมาตรการ SELECTIVE AVAILABILITY ได้ แต่ระบบ DGPS มีพื้นที่ครอบคลุมค่อนข้างจำกัด เนื่องจากเครื่องรับจะต้องอยู่ภายในรัศมีประมาณ ๑๐๐ ไมล์จากสถานีฝั่ง

ระบบหาที่เรือด้วยดาวเทียมอื่นๆ

ระบบ GPS เป็นระบบหาที่เรือที่มีผู้ใช้มากที่สุดในปัจจุบัน โดยผู้ใช้ส่วนใหญ่ใช้สัญญาณ C/A CODE ซึ่งไม่มีมาตรการป้องกันการรบกวนสัญญาณ (ANTI-SPOOFING) เนื่องจากกระทรวงกลาโหมสหรัฐฯ เป็นผู้ควบคุมระบบ GPS เพื่อความมั่นคงของประเทศสหรัฐอเมริกาเป็นหลัก ด้วยเหตุนี้จึงมีหลายประเทศที่พยายามจะสร้างระบบหาที่เรือด้วยดาวเทียมของตนเองเพื่อทดแทนระบบ GPS หรือเพื่อเสริมความถูกต้องแม่นยำให้กับระบบ GPS สำหรับผู้ใช้ทั่วไป

ระบบหาที่เรือด้วยดาวเทียมที่เป็นคู่แข่งของระบบ GPS คือระบบ GLONASS หรือระบบ GLOBAL NAVIGATION SATELLITE SYSTEM ของอดีตสหภาพโซเวียต หรือรัสเซียในปัจจุบัน ระบบ GLONASS ถูกออกแบบในช่วงสงครามเย็นเพื่อทดแทนระบบ GPS ของสหรัฐอเมริกา โดยระบบ GLONASS มีความคล้ายคลึงกับระบบ GPS หลายประการ ทั้งทางด้านส่วนประกอบของระบบและหลักการทำงาน กล่าวคือระบบ GLONASS ประกอบด้วยดาวเทียม ๒๔ ดวง สถานี ภาคพื้นดินสำหรับติดตามและควบคุมดาวเทียมในวงโคจร และเครื่องรับสัญญาณและคำนวณหาตำบลที่ ระบบ GLONASS ใช้หลักการ TIMING AND RANGING เพื่อคำนวณหาตำบลที่ โดยให้บริการตำบลที่แบบปกติ (STANDARD PRECISION – SP) ด้วยความถี่ L1 และบริการตำบลที่แบบละเอียด (HIGH PRECISION – HP) ด้วยความถี่ L1 และ L2 เช่นเดียวกับระบบ GPS

ด้วยเหตุที่ทั้งระบบ GPS ของสหรัฐอเมริกา และระบบ GLONASS ของรัสเซียถูกควบคุมโดยหน่วยงานเพื่อความมั่นคง ดังนั้นการให้บริการสำหรับผู้ใช้ทั่วไปอาจถูกระงับหรือลด ความเที่ยงตรงในยามสงคราม สหภาพยุโรป (EUROPEAN UNION) จึงได้พยายามพัฒนาระบบ หาตำบลที่ด้วยดาวเทียมของตนเองขึ้น โดยระบบดังกล่าวจะเป็นระบบหาตำบลที่ด้วยดาวเทียม ระบบแรกที่ถูกสร้างขึ้นเพื่อผู้ใช้ทั่วไปเป็นหลัก และไม่ถูกควบคุมด้วยหน่วยงานเพื่อความมั่นคง โครงการระบบหาตำบลที่ด้วยดาวเทียมของยุโรป เป็นโครงการความร่วมมือระหว่างสหภาพยุโรปกับองค์การอวกาศยุโรป (EUROPEAN SPACE AGENCY)

โครงการนี้แบ่งออกเป็นสองช่วง ในช่วงแรกเป็นโครงการระบบ ดาวเทียมแบบวงโคจรคงที่ (GEOSTATIONARY ORBIT SATELLITE) เพื่อเสริมความถูกต้องแม่นยำให้กับระบบ GPS และระบบ GLONASS เรียกว่าระบบ EGNOS (EUROPEAN GEOSTATIONARY NAVIGATION OVERLAY SYSTEM) ระบบ EGNOS ถูกพัฒนาขึ้นในช่วงปลายทศวรรษที่ ๑๙๘๐ และจะเริ่มเปิดให้บริการในปี ค.ศ.๒๐๐๔ (พ.ศ.๒๕๔๗) ส่วนประกอบสำคัญของระบบ ประกอบด้วยดาวเทียมวงโคจรคงที่ ๓ ดวง ให้พื้นที่ครอบคลุมทวีปยุโรป แอฟริกา มหาสมุทร แอตแลนติก และบริเวณใกล้เคียง โดยระบบ EGNOS ใช้ดาวเทียม ARTEMIS ขององค์การอวกาศ ยุโรป ร่วมกับดาวเทียม INMARSAT-3 อีก ๒ ดวง ทำหน้าที่ส่งต่อ (RELAY) สัญญาณเวลาจากนาฬิกาอะตอม และสัญญาณค่าความน่าเชื่อถือของระบบ GPS จากสถานีภาคพื้น ซึ่งสามารถให้ค่าตำบลที่ที่มีค่าความถูกต้องถึง ๕ เมตร

ช่วงที่สองของโครงการคือการสร้างระบบหาตำบลที่ด้วยดาวเทียมของยุโรป หรือระบบ GALILEO โดยสหภาพยุโรปได้ประกาศเริ่มต้นโครงการระบบ GALILEO อย่างเป็นทางการเมื่อ ปี ค.ศ.๑๙๙๙ (พ.ศ.๒๕๔๕) และมีกำหนดส่งดาวเทียมขึ้นสู่วงโคจรในปี ค.ศ.๒๐๐๕ (พ.ศ.๒๕๔๙) ระบบ GALILEO ประกอบด้วยดาวเทียม ๓๐ ดวง สถานีติดตามและควบคุมภาคพื้นดิน และ เครื่องรับสัญญาณและคำนวณหาตำบลที่ ซึ่งสามารถรับสัญญาณจากดาวเทียม GPS และ GLONASS ได้ด้วย ระบบ GALILEO ยังเป็นอีกขั้นหนึ่งของการรวมระบบหาตำบลที่ต่างๆ เข้าด้วยกันเป็นระบบ GNSS (GLOBAL NAVIGATION SATELLITE SYSTEM) ซึ่งการรวมดาวเทียมหาตำบลที่ทั้งหมดเข้าเป็นระบบเดียวจะทำให้เครื่องรับสัญญาณสามารถใช้ดาวเทียมจำนวนมากกว่าเดิมในการคำนวณหาตำบลที่ ซึ่งจะให้ค่าตำบลที่ที่มีความถูกต้องแม่นยำมากกว่าการใช้ระบบใดระบบหนึ่งเพียงลำพัง

ระบบแผนที่อิเล็กทรอนิกส์

การพัฒนาระบบหาตำบลที่ด้วยดาวเทียมทำให้นักเดินเรือสามารถทราบตำบลที่ของเรือในทะเลเปิดห่างฝั่งได้อย่างถูกต้องแม่นยำและต่อเนื่องเป็นครั้งแรก นอกจากนั้นแล้วความก้าวหน้าของระบบคอมพิวเตอร์และอิเล็กทรอนิกส์ในปัจจุบัน ทำให้การรับส่งข้อมูลจากอุปกรณ์ต่างๆ ที่เกี่ยวข้องกับการเดินเรือ และการแสดงภาพสถานการณ์เป็นไปได้อย่างถูกต้องและรวดเร็ว ส่งผลให้ระบบ การรวบรวมข้อมูลจากระบบตรวจจับและอุปกรณ์ต่างๆ เข้าด้วยกันอย่างบูรณาการ (INTEGRATED BRIDGE SYSTEM) มีความเป็นไปได้ในปัจจุบัน ตลอดจนการนำข้อมูลต่างๆ ในแผนที่เดินเรือมา สร้างเป็นฐานข้อมูลคอมพิวเตอร์ สามารถกระทำได้อย่างปลอดภัยเทียบเท่ากับการสร้างแผนที่กระดาษแบบเดิม จึงได้มีหน่วยงานของรัฐบาลและบริษัท เอกชนในหลายๆ ประเทศ หันมาเริ่มพัฒนาระบบแผนที่อิเล็กทรอนิกส์ที่สามารถแสดงที่เรือและ ข้อมูลประกอบอื่นๆ บนแผนที่ได้ตลอดเวลา

ระบบแผนที่อิเล็กทรอนิกส์แบ่งออกได้เป็น ๒ ประเภทใหญ่ๆ คือระบบ ECS (ELECTRONIC CHARTING SYSTEM) กับระบบ ECDIS (ELECTRONIC CHART DISPLAY AND INFORMATION SYSTEM) โดยระบบทั้งสองมีความคล้ายกันคือการแสดงข้อมูลต่างๆ บนแผนที่อิเล็กทรอนิกส์ แต่ต่างกันตรงที่ระบบ ECDIS มีมาตรฐานรับรองแน่นอนจากองค์การ ระหว่างประเทศ และเป็นที่ยอมรับในทางกฎหมายว่าสามารถนำมาใช้ได้อย่างปลอดภัยเทียบเท่า การใช้แผนที่กระดาษกับการหาที่เรือแบบเดิม ในขณะที่ระบบ ECS ไม่ได้ผ่านการรับรอง และจำเป็นต้องใช้ร่วมกับแผนที่กระดาษจึงจะถูกต้องตามกฎหมาย อย่างไรก็ดีการที่ระบบ ECS ไม่ได้ผ่าน การรับรองไม่ได้หมายความว่าระบบ ECS ด้อยกว่าระบบ ECDIS เสมอไป ในปัจจุบันมีระบบ ECS หลายระบบที่มีขีดความสามารถใกล้เคียงหรือเทียบเท่าระบบ ECDIS

ส่วนประกอบหลักของระบบ แผนที่อิเล็กทรอนิกส์ประกอบด้วยแผนที่อิเล็กทรอนิกส์ในรูปของฐานข้อมูลหรือไฟล์คอมพิวเตอร์ จอแสดงผล และเครื่องคอมพิวเตอร์สำหรับประมวลผลข้อมูลจากไฟล์แผนที่อิเล็กทรอนิกส์และทำหน้าที่เชื่อมต่อกับอุปกรณ์อื่นๆ ในเรือ เช่นระบบหาที่เรือด้วยดาวเทียม เข็มทิศไยโร เรดาร์ และเครื่องหยั่งน้ำ เป็นต้น โดยแผนที่อิเล็กทรอนิกส์แบ่งออกได้เป็น ๒ ประเภท ตามลักษณะการนำข้อมูลมาสร้างไฟล์คอมพิวเตอร์ ได้แก่แผนที่ RASTER และแผนที่ VECTOR ส่วนแผนที่ RASTER คือการแสกนแผนที่กระดาษลงบนคอมพิวเตอร์ หรือการสร้างแผนที่เป็นไฟล์ภาพ และใส่พิกัดตำบลที่ลงบนไฟล์แผนที่นั้น วัตถุและเส้นต่างๆ บนแผนที่ RASTER จะถูกแสดงด้วยจุดสีที่เรียกว่า PIXEL แผนที่แบบนี้สามารถสร้างได้ง่าย และมีราคาถูก นอกจากนี้การใช้สีและสัญลักษณ์ต่างๆ เหมือนกับแผนที่กระดาษ ทำให้อ่านง่าย แต่แผนที่ RASTER ให้ข้อมูลได้ไม่ละเอียดเท่าแผนที่ VECTOR และไม่มีรายละเอียดเพิ่มเติมสำหรับวัตถุและสัญลักษณ์ต่างๆ บนแผนที่เนื่องจากวัตถุและสัญลักษณ์เหล่านั้นเป็นเพียงจุดสีที่ประกอบขึ้นมาเป็นภาพ

ส่วนแผนที่ VECTOR คือฐานข้อมูลที่ประกอบด้วยพิกัดตำบลที่ พร้อมทั้งข้อมูลรายละเอียดของวัตถุและพื้นที่ต่างๆ บนแผนที่นั้น โดยข้อมูลในแผนที่ถูกจัดเป็นชั้น (LAYER) ซึ่งผู้ใช้สามารถเลือกแสดงหรือไม่แสดงชั้นที่ต้องการได้ นอกจากนี้ผู้ใช้ยังสามารถเรียกดูข้อมูลเพิ่มเติมเกี่ยวกับวัตถุต่างๆ บนแผนที่ได้ แผนที่แบบ VECTOR ให้ข้อมูลที่ละเอียดกว่าแผนที่ RASTER และเนื่องจาก ข้อมูลต่างๆ ถูกบรรจุอยู่ในฐานข้อมูล การขยายขนาดแผนที่จึงทำให้เห็นรายละเอียดข้อมูลมากขึ้น ต่างจากแผนที่ RASTER ที่เป็นไฟล์ภาพ แต่การสร้างแผนที่ VECTOR มีความยุ่งยากและมีราคา แพงกว่า ทำให้แผนที่ RASTER ยังคงเป็นที่แพร่หลายอยู่

ในปัจจุบันได้มีผู้ผลิตแผนที่อิเล็กทรอนิกส์ออกมาหลายรูปแบบ ทั้งแบบ RASTER และ VECTOR องค์การอุทกศาสตร์สากล (INTERNATIONAL HYDROGRAPHIC OFFICE – IHO) จึงได้กำหนดมาตรฐานควบคุมแผนที่อิเล็กทรอนิกส์แบบ VECTOR สำหรับใช้กับระบบ ECDIS โดยแผนที่แบบนี้เรียกว่าแผนที่ ENC หรือ ELECTRONIC NAVIGATION CHART และองค์การกิจการทางทะเลระหว่างประเทศ (INTERNATIONAL MARITIME ORGANIZATION – IMO) ได้กำหนดมาตรฐานควบคุมระบบ ECDIS โดยรวม เพื่อให้สามารถนำมาใช้งานได้อย่างปลอดภัยเทียบเท่าการใช้แผนที่กระดาษตามสนธิสัญญาว่าด้วยความปลอดภัยของชีวิตในทะเล (SAFETY OF LIFE AT SEA CONVENTION – SOLAS CONVENTION)

บทสรุป

ศิลป์และศาสตร์แห่งการเดินเรือมีประวัติความเป็นอันยาวนานนับพันปีตั้งแต่ความอยากรู้อยากเห็นทำให้มนุษย์เริ่มออกท้าทายมหาสมุทรอันเวิ้งว้าง จนกระทั่งในปัจจุบันทะเลได้กลายเป็นเส้นทางขนส่งที่สำคัญและคุ้มค่าที่สุดในเชิงปริมาณ ซึ่งตลอดเวลาที่ผ่านมาการเดินเรือได้มีวิวัฒนาการมาเป็นลำดับตามความก้าวหน้าทางเทคโนโลยีของแต่ละยุคสมัย แต่ธรรมชาติของทะเลยังคงเต็มไปด้วยความยากลำบากและอันตราย โดยเฉพาะเมื่อนักเดินเรือประมาทและขาดการ เตรียมพร้อมที่ดี และถึงแม้ว่าเครื่องมืออิเล็กทรอนิกส์ในปัจจุบันจะช่วยเพิ่มความสะดวกสบายให้กับนักเดินเรือ แต่ก็ไม่ได้เป็นหลักประกันความปลอดภัยในการเดินเรือ นักเดินเรือสมัยใหม่จึงไม่ควร ละเลยความเข้าใจและการฝึกฝนวิธีการเดินเรือแบบต่างๆ นอกเหนือจากการเดินเรืออิเล็กทรอนิกส์ เพื่อไม่ให้ตกเป็นทาสของเครื่องมือและเทคโนโลยี เพราะวันหนึ่งเราอาจมีความจำเป็นต้องพึ่งวิธีการหาที่เรือแบบดั้งเดิมที่อาศัยเพียงเครื่องวัดดาวและการคำนวณเล็กน้อยก็เป็นได้

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s